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The correlation between the power-law
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In this study we investigated the relationship between the coefficients of the Norton law for
low-stress high-temperature deformation results of different materials reported in the
literature. These coefficients are interrelated and it is shown that this relation can be
theoretically deduced from the assumption of a variation of the activation area with the
inverse of the effective stress (i.e. a variation of the activation energy with the logarithm of
the stress). As a consequence, all the straight lines ln(strain-rate)—ln (stress) intersected at
the same point, named the pivot point. This pivot point is characteristic of each material.
Such a correlation can be found in the field of the mechanics of materials when a power-law
relation holds.  1998 Kluwer Academic Publishers

1. Introduction
The variation of the strain-rate, e5 with the applied
load is usually described by engineers by a power-law
called the Norton law

e5 "A
NL

(r/r
0
)n (1)

in which r
0

is a reference stress and n the power
coefficient. The Norton law coefficient, A

NL
, is gener-

ally analysed in terms of an Arrhenius equation of the
form

A
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where C
1

is a constant for a given material, Q is the
apparent activation energy for the mechanism in-
volved in the deformation process (usually close to the
activation energy for self diffusion), and R is the gas
constant.

On the other hand, in the materials science litera-
ture, for polycrystals such as alloys and ceramics at
relatively high stresses and high temperatures, the
Dorn equation is preferred which may be written as

e5 "A
D
[(D

L
Gb)/R¹] (r/G)n (3a)

or

e5 "A@
D
[(D

L
r

0
b))/R¹] (r/r

0
)n (3b)

where G is the shear modulus, b the length of the
appropriate Burger’s vector, ¹ the absolute temper-
ature, D

L
the lattice diffusion coefficient, n the stress

exponent, the value of which varies from about 4—7
(and sometimes up to 20) depending on the type of
flow, the temperature and the material under study,
and A

D
(A@

D
) is a dimensionless constant which has

values from the order of unity to as large as 1016.
Thus, Equation 3 is essentially empirical and it is

difficult to ascribe a physical signification to A
D
(A@

D
)

and n.
According to the works of Ashby and co-workers

[1—3] the coefficients A
D

and n are not independent of
each other. An empirical correlation was established
between them which can be written as

log
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where B
1
(&3) and B

2
(&2.7) are constants from a class

of materials. Derby and Ashby [3] showed that this
equation has a physical meaning and can be explained
by introducing a threshold or a friction stress into
creep law with a constant A near 1 and a stress
exponent n"3. This last analysis leads to the expo-
nent coefficient depending on the applied stress, in
contradiction to experimental data for pure metal and
solid solution alloys [4].

The purpose of this study is to illustrate the role of
the temperature in Equation 1 by analysing already
published data, and to find some physical significance
for the relation between the coefficients A

NL
and n in

the Norton law.

2. Analysis of the Norton law coefficients
In a recent work by Bhattacharya et al. [5], the engin-
eering equation for high-temperature deformation
(Equation 1) in the case of linear ln (strain-rate)—
ln(stress) relationship was analysed in the form

ln e5 "ln A
1
#n ln r (5)

with

ln A
1
"ln C

1
!n ln r

0
!(Q/R¹) (6)

for 27 materials including glass-ceramics, ceramics,
metals, alloys, superalloy, metal-matrix composites
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TABLE I Q, C, r
0
, a and b from [5] and calculated values of coefficients in Equations 9 and 10

Material Q (KJ mol~1) ln C
1

ln r
0

a b a b ln r
1

ln e5
1

9608-Glass 631 49.94 10.690 !0.0987 1 581.34 0.77 !0.0170 58.685 45.203
0329-Glass 800 65.23 6.910 !0.3400 1 910.84 0.84 !0.0175 57.266 48.109
3YTZP 468 22.88 2.150 0.7700 2 065.18 1.49 !0.0340 29.407 43.868
4YTZP 412 28.33 7.520 1.5212 434.32 1.66 !0.0082 121.618 201.896
52YTZT 502 24.93 2.760 11.1174 !12 123.00 13.71 0.4503 !2.221 !30.441
6YTZP 498 21.67 1.900 1.0221 617.90 1.22 !0.0101 98.840 120.754
12CETZP 491 22.96 2.250 1.8553 !914.28 1.55 0.0160 !62.344 !96.880
TZP20A 577 28.52 1.880 3.3469 !2 161.59 2.61 0.0331 !30.226 !78.936
3YTZP40A 680 39.45 3.730 0.2600 3 184.32 1.57 !0.0340 29.415 46.128
3YTZP60A 737 43.95 4.410 5.1343 !4 576.20 3.71 0.0668 !14.961 !55.506
3YTZP80A 749 44.38 3.350 2.0831 !339.25 1.94 0.0038 !262.203 !508.782
42YTZP20A 713 32.18 !0.850 !4.0790 11 047.71 0.08 !0.1447 6.913 0.516
BaTiO

3
1072 77.67 2.440 !13.7737 23 903.94 0.43 !0.1276 7.834 3.374

Spinel 429 20.78 4.810 !5.0180 12 925.89 0.09 !0.1136 8.802 0.748
MA754 611 55.03 4.230 15.7841 !9 949.64 19.50 0.3168 !3.156 !61.555
IN100 644 3.81 3.810 !5.7693 10 988.30 !3.39 !0.0921 10.859 !36.859
Cu 167 12.72 3.410 0.4858 3 202.75 1.63 !0.1033 9.682 15.766
Mg 163 18.53 2.030 4.7595 506.76 4.98 !0.0246 40.718 202.667
W 611 14.23 1.940 4.6571 4 254.67 4.93 !0.0521 19.213 94.671
Comp-s10 196 34.33 2.620 !8.3617 15 152.84 5.11 !0.2395 4.176 21.321
Comp-s14 284 37.06 2.120 !8.1161 15 443.41 4.41 !0.2308 4.332 19.108
Comp-s7 102 22.67 2.960 !22.9530 23 437.04 3.06 !0.2871 3.483 10.655
Comp-s4 203 36.87 2.400 !12.4240 17 208.55 5.04 !0.2619 3.819 19.242
WC-Co 454 34.04 6.680 5.6824 !4 837.62 6.53 0.2170 !4.608 !30.102
Ni

3
Si 556 45.35 3.520 !17.7576 26 636.38 0.13 !0.1658 6.031 0.767

Al—Cu 132 14.26 2.870 !1.7542 2 674.09 0.44 !0.1135 8.807 3.845
Pb—Sn 32 7.69 4.100 !0.3214 917.43 0.76 !0.1205 8.295 6.342
Pb—Sn 68 7.69 4.100 !0.3210 917.43 0.37 !0.0768 13.015 4.828

and intermetallics. The literature data were analysed
in terms of Equation 1 by means of the least squares
method and the coefficients C

1
, Q, r

0
and n are opti-

mized to find the minimum in Equation 7 for a given
temperature ¹

i
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(7)

The best fits were obtained when the material con-
stants ln C

1
, and lnr

0
are assumed to be independent

of both stress and temperature, Q is near the activa-
tion energy as reported by previous authors (activa-
tion energy at a constant stress or Dorn analysis using
a compensated stress) and n is a linear function of the
temperature

n"a#(b/¹) (8)

A best fit can be sometimes found by adding a term in
(c/¹2), but Equation 8 is reported to give an accurate
estimation of the strain-rate [5].

The strain-rates were calculated later with the com-
puted values by Equations 5—8 and a very good agree-
ment could be achieved with the experimental data
(the error prediction is generally less than 2%) over
the temperature and stress ranges considered. All the
coefficients calculated by Bhattacharya et al. [5] are
listed in Table I.

With the results reported in Table I, we calculated
the relation between the coefficients n and C

1
in the

form

n"a#b ln A
1

(9)

A perfect correlation was found for all materials (the
regression coefficients is r2"1) where a and b are
independent of the temperature and the stress ranges
investigated. Equation 9 implies that, for a given ma-
terial, all the straight lines ln e versus ln ¹ r cross over
to the same pivot point, e5

p

, r
p

such as

e5 "e5
1
(r/r

1
)n (10)

The coefficients a and b are easily calculated from
Equations 5, 6, and 8

a#b/¹"a#b[ln C
1
!(Q/R¹ )!a ln r

0

!(b/¹) ln r
0
] (11)

and as a and b are temperature independent

a"a(1#b ln r
0
)!b ln C

1
(12a)

b"!1/[(Q/bR)#ln r
0
] (12b)

From Equations 10 and 12 the coordinates of the
pivot point become

r
1
"exp(!1/b)"r

0
exp(Q/bR) (13a)

e5
1
"exp(!a/b)"e5

0
(r

1
/r

0
)a (13b)

The values we obtained for a, b, e5
1

and r
1

are re-
ported in Table I and plotted in Figs 1 and 2. For
example, for Si

3
N

4
it is shown in Fig. 3 that when the

deformation rate is plotted versus the applied stress in
log—log coordinates, the straight lines intersected in
the pivot point. The fit is remarkable with the points
calculated from Equations 7 and 8 and with the ex-
perimental data.
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Figure 1 Variation of coefficients a and b in Equation 9 for the 27
materials investigated by Bhattacharya et al. [5]. Coefficients corre-
lated for (d) ceramics and (#) other materials.

Figure 2 Variation of coefficients ln e5
1

versus ln r
1

in Equation 10.
(d) Coefficients correlated for (s) ceramics and (j) other materials.

Figure 3 Variation of the natural logarithm of the strain-rate versus
the natural logarithm of the applied stress for Ni—S

4
samples. (#)

Experimental data, others symbols: calculated values from [5] with
Equations 6—8. The straight lines intersect at the same point: the
pivot point. (s) 1323 K, (n) 1353 K, (h) 1373 K.

TABLE II Variation of the apparent activation energy in Equa-
tion 6 with r

0

r
0

IN 100 MA 754 4 YTZP 42 YTZP 20 A
(MPa) Q (J mole~1) Q (J mole~1) Q (J mole~1) Q (J (mole~1)

1 992 069 261 089 439 154 703 609
10 781 712 451 562 430 839 678 171

100 571 356 642 034 422 525 652 732
1000 360 999 832 507 414 210 627 295

The first observation which can be made is that the
pivot point is not unique, but depends on the material
investigated. A second observation is that the coefficients
a and b are interrelated for the same class of materials.
For example, for ceramics and glass-ceramics (Fig. 1)

a"2.12#22.8 b (14)

This relation means that for the same class of mater-
ials, the pivot points lie in the same straight line in
log—log coordinates (Fig. 2).

The third observation to be noticed is that the pivot
point implies that the coefficients Q and r

0
of Equa-

tion 6 are related by Equation 15

exp!(Q/R¹)r~b@RT
0

"exp![(Q#b ln r
0
)/R¹]

(15)

A change in Q corresponds to a variation in r
0
. The

calculation scheme is thus indeterminate and it is
therefore impossible to obtain Q and r

0
independently.

For example, Table II gives different values of r
0

and Q for IN100, MA74, 4YTZP and 42YTZP20A. It
is obvious that for the two first materials the values of
Q depend strongly on r

0
, but the coordinates of the

pivot point remain unchanged.

3. The physical meaning of the
n—ln A relationship

In the preceding section we presented results obtained
for the 27 materials investigated and showed that the
pivot point is a consequence of the mathematical
equations chosen to describe the Norton law coeffi-
cients in creep experiments. The existence of one em-
pirical formula for a variety of materials supports the
interpretation of the pivot point as something of fun-
damental significance. Our purpose is now to find a
physical interpretation of Equation 1 when glide ki-
netics are described by an Arrhenius equation such as
Equation 2 and a temperature dependence of the
power-law exponent such as Equation 8.

It is now well known that plastic deformation of
polycrystalline materials is thermally activated and
that the strain-rate generally obeys to the Arrhenius
relationship (Equation 2). The stress dependence of
the activation energy, *G, is the activation area, A,
with physical explanation corresponds to the area
swept out by a dislocation segment in the activation
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process

A"!(1/b) (*G/r*)
T

(16a)

r*"r!r
i

(16b)

where r* is the effective (or thermally activated) com-
ponent of the applied stress, and r

i
is the long-range

internal stress or athermal component of the stress.
The activation area is a strong function of stress and

is only weakly dependent on composition and grain
size. If A is proportional to the inverse of the effective
stress, as is commonly reported in the literature [6, 7]

A"B/r* (17)

and by integrating Equation 16 with Equation 17, and
provided that no structural alterations occur during
the test and the mobile dislocation density remains
constant, the activation energy becomes dependent on
the logarithm of the effective stress, as shown for
example by Anglada and Guiu [8]

*G"P (*G/r*)
T
r*"P (Bb/r*)r*

"*G
0
!Bb ln (r*/r*

3
) (18)

where r*
3

is some arbitrary constant with units of
stress introduced to avoid the singularity at r*"0,
and *G

0
the activation energy at r*"0.

Substituting the dependence of the activation en-
ergy with the stress from Equation 18 into the rate
equation leads to

e5 "e5
0
(r*/r

3
)m* exp!(*G

0
/R¹ ) (19a)

with

m*"Bb/R¹ (19b)

As, in general, the pre-exponential factor is propor-
tional to the ath power of the applied stress [9], the
strain-rate can be shown to be

e5 "A@(r*/r
3
)(a`Bb@RT exp!(*G

0
/R¹) (20)

This expression is the same as the Norton equation
with the only difference being that the effective stress
must be considered in place of the total applied stress.

The temperature dependence of the power-law coef-
ficient, n, is not surprising, and the constancy of the
product m*¹ (equivalent to assuming a zero entropy
of activation) has been observed by numerous
searchers [10—12].

From these theoretical considerations it is shown
that an inverse dependence of the surface activation
versus the effective shear stress implies that the activa-
tion energy depends logarithmically on stress

*G"*G
0

ln(r*
0
/r*) (21)

and the power-law representation for the creep pro-
cess is a consequence of Equation 21. Such depend-
ence of activation energy versus the logarithm of the
stress was reported in the literature. For example,
Seeger [13, 14] proposed a rate-controlling mecha-
nism governed by the Peierls—Nabarro stress. This
mechanism involved the formation of a pair of kinks

in the dislocation line corresponding to the activation
enthalpy

H"H
K
[1#(1/4) log (16r0

1%*%3-4
/nr*)] (22)

where H
K

is the energy for the formation of a single
kink, and r0

1%*%3-4
the Peierls—Nabarro stress at 0 K.

By substituting Equation 22 in the rate Equation 2,
we obtained

e5 "e5
0

exp(!H
K
/R¹) [(r*/(16/n)r0

1%*%3-4
]HK@4eRT (23)

where e is the base of the system of natural logarithms.
With Equation 10 the coordinates of the pivot point

become

p
1
"(16]104 p)r0

1%*%3-4
(24a)

e5
1
"e5

0
(24b)

This result must be related to recent works by Wang
and Nieh [15] where it is shown that the Peierls stress
plays an important role in the power-law creep. Using
extensive data for metals, ceramics, and silicates, it
was observed that r

0
in Equation 3b may be Peierls’

stress and that A@
D

is a function of this stress. These
results are in good agreement with the coordinates
obtained for the pivot point.

The variation of the activation energy with the
logarithm of the effective stress is observed in other
rate-controlling mechanisms, as in the Hartley [16]
dislocation intersection dislocation mechanism and
the Schoeck and Seeger [17] thermally activated
cross-slip mechanism. This activation energy is re-
ported to be expected if the stress exerted by a barrier
on one element of the mobile dislocation varies in-
versely with the distance [16, 18]. It should also be
noticed that other dependences of the activation en-
ergy on the logarithm of the stress have been reported
by Li [19] and by Yaroszewicz and Ryvkina [20, 21]
and leads directly to an inverse dependence of the
activation area with the effective stress (Equation 17)
and a power-law relationship between the effective
stress and strain-rate (Equation 1) for the deformation
rate process. In a recent work, Reed-Hill and Kauf-
man [18] reported that the power-law relationship
holds if:

(i) the internal stress is small enough to be neglect-
ed so r"r*;

(ii) dynamic strain ageing did not occur;
(iii) the temperature is not high enough to allow

dynamic recovery or dynamic recrystallization to alter
the metallurgical structure.
With the first assumption, when the long-range inter-
nal stress is small enough to be neglected, the Norton
law may apply and the pivot point, obtained from the
results of Bhattacharya et al. [5], can be physically
justified. On the other hand, a direct relation between
the activation area and the inverse of the applied stress
was found by Balasubramanian and Li [6] and leads
directly to a power-law according to Equation 1.

4. Discussion and concluding remarks
The correlation (Equation 9) between the constant,
A

1
, and the exponent, n, and the derived relationships
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Figure 4 Variation of the power-law exponent in the Meyer’s rela-
tionship with the power-law coefficient in Equation 26 for single
crystals of (d) TiO

2
n"2.00!1.14 A; (s) SnO

2
n"1.91!0.89 A;

and (h) LaB6 n"1.66!0.19 A, from Li and Bradt [23, 24].

Figure 5 Correlation between the coefficients n and k of the vari-
ation of the ratchetting rate versus the maximum shear stress (from
Ghonem and Kalousek’s experimental results [27]).

(Equation 10) is not limited for the plastic flow and the
creep process, and was reported by numerous authors
when mechanical properties are related by means of
a power-law expression such as

½"CXn (25)

Zilberstein [22] argued that the correlation exists well
outside of mechanics of materials when a power-law
holds, and such a correlation was related in many
papers in the fields of the material science.

1. For the hardness test, in the microhardness
range (typically when the applied load, P, varies be-
tween 5 and 500 gf), P is related to the indentation
print, d, by means of the Meyer’s law

P"Adn (26)

When n is less than 2 (values of the exponent are often
reported to vary between 1 and 2) the measured hard-
ness of the material is dependent on the applied load
and this phenomenon is known as the indentation size
effect (ISE). It was reported in recent works by Li and
Bradt on rutile, casserite [23] and lanthanum hexa-
boride [24] single crystals, that the coefficients A and
n for Knoop microhardness are correlated (see also
[25] for Brinell and Vickers hardness). It can be seen
in Fig. 4 that the variation of n versus A is linear and
the straight lines intersect in the same point.

It should be noticed that Meyer’s law is only valid
in a small interval of the test load and does not possess
any physical significance. A relation between the ap-
parent hardness and the reciprocal length of the in-
dentation print is more appropriate for representing
the ISE [26].

2. For chromium alloyed rail steel, Ghonem and
Kalousek [27] showed on biaxial loading specimens,
that the ratchetting rate varies with the parallel-
to-flow shear stress as a function of the maximum
compressive stress value, r

.!9
, in a power-law (e5

N
)
S
"

ksn
.!9

. The coefficients k and n depend on r
.!9

and are
correlated (Fig. 5).

3. The coefficients in the Manson—Coffin law

Nn*e
1
"C (27)

for creep resistance steels, Cr—Ni steels and their
welded joints, are interrelated [25, 28].

But the main works are related to the fatigue crack
growth rate and the relations between the Paris—Erdo-
gan’s coefficients

da/dN"C*Kn (28)

Numerous authors have point out the relation be-
tween m and C, such as Equations 9 and 10 [29—33],
and Tanaka [34] called the point where all the
straight lines da/dN versus *K intersected the ‘‘pivot
point’’ for stage II fatigue crack growth rate. One
relation was found for all the steels and another one
for all the aluminium alloys [31]. In fact, it is difficult
to understand why a unique point is found for one
class of materials, so the physical meaning of such
a relation was uncertain and some criticisms were
made by McCartney and Irving [35] (the relation is
a consequence of the dimensional equation), and by
Cortie and Garret [36, 37] (the relation is an artefact

produced by the logarithmic representation and is of
little physical significance). These criticisms were re-
futed by Iost and Lesage [38] and it was shown that
the earlier works were generally erroneous, because
the pivot point depends on the material investigated.

The temperature dependence of the coefficients
C and m were investigated by Iost [39] for steels,
aluminium alloys, HS steels and superalloy. The coef-
ficient m is temperature dependent and the Equations
9 and 10 hold again. For Jeglic et al.’s [40] works on
Al—2.6 Mg alloy, the intersection between the repres-
entation of the variation of the fatigue crack growth
rate versus the stress intensity factor range was ob-
served in normal coordinates and the objection of
Cortie and Garet [36, 37] was rejected. It was also
found that Yokobori’s kinetic theory of fatigue crack
propagation [30], based on dislocation dynamics,
gives a theoretical justification of the pivot point.
This justification is based on an activation energy
which depends on the logarithm of the stress and
must be related to the above development to find a
physical meaning to the n—ln A

1
relationship to the

Norton law.
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In summary, this study has shown that the two
constants in the Norton law for the flow process are
not independent for a given material, with a constant
structure, when the exponent, n, varies directly as
the absolute temperature. Experimental verification
of the linearity between n and 1/¹ has been observed
in widely different materials [41] and then a correla-
tion exists between the coefficients a and b when
the temperature is varying. The reduction in the
number of constants used to described the deforma-
tion process may be useful for engineering charac-
terization and can significantly improve the
predictability in practical situations when no testing
can be performed [42].

This correlation implies that all the straight lines
representing the variation of the strain rate versus the
applied load in logarithmic coordinates intersected at
the same point, named the pivot point.

The pivot points depend on the material, but is
interrelated for the same class of materials.

These relations are verified with a very good accu-
racy for the 27 materials reported by Bhattacharya
et al. [5] and are physically related to a logarithmic
variation of the activation energy with the applied
stress, which corresponds to the inverse variation be-
tween the activation area and the stress (applied or
effective) as reported earlier in a large number of
experimental studies.

Such a correlation is not unique, but was reported
earlier in the literature when the mechanical proper-
ties are described by a power law.
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